71 research outputs found

    Adaptive monitoring for mobile networks in challenging environments

    Get PDF
    The increasing capabilities of mobile communication devices are changing the way people interconnect today. Similar trends in the communication technology domain are leading to the expectation that data and media are available anytime and everywhere. A result is an increasing load on communication networks. In dynamic mobile networks that particularly rely on wireless communication such data requirements paired with environmental conditions like mobility or node density increase the risk of network failure. Consequently, monitoring is crucial in mobile networks to ensure reliable and efficient operation. Current monitoring mechanisms mostly rely on a static architecture and exhibit problems to handle the changes of mobile networks and environmental conditions over time. In this paper, an adaptive monitoring mechanism is presented to overcome these limitations. The mechanism exploits the connectivity and resource characteristics of mobile communication devices to (i) reconfigure its monitoring topology and (ii) adapt to changes of mobile networks and environmental conditions. Through evaluations we show that our proposed solution reduces the achieved relative monitoring error by a factor of six and represents a robust and reliable monitoring mechanism for these challenging environments

    Little Boxes: A Dynamic Optimization Approach for Enhanced Cloud Infrastructures

    Full text link
    The increasing demand for diverse, mobile applications with various degrees of Quality of Service requirements meets the increasing elasticity of on-demand resource provisioning in virtualized cloud computing infrastructures. This paper provides a dynamic optimization approach for enhanced cloud infrastructures, based on the concept of cloudlets, which are located at hotspot areas throughout a metropolitan area. In conjunction, we consider classical remote data centers that are rigid with respect to QoS but provide nearly abundant computation resources. Given fluctuating user demands, we optimize the cloudlet placement over a finite time horizon from a cloud infrastructure provider's perspective. By the means of a custom tailed heuristic approach, we are able to reduce the computational effort compared to the exact approach by at least three orders of magnitude, while maintaining a high solution quality with a moderate cost increase of 5.8% or less

    Conducting a Large-scale Field Test of a Smartphone-based Communication Network for Emergency Response

    Full text link
    Smartphone-based communication networks form a basis for services in emergency response scenarios, where communication infrastructure is impaired or overloaded. Still, their design and evaluation are largely based on simulations that rely on generic mobility models and weak assumptions regarding user behavior. For a realistic assessment, scenario-specific models are essential. To this end, we conducted a large-scale field test of a set of emergency services that relied solely on ad hoc communication. Over the course of one day, we gathered data from smartphones distributed to 125 participants in a scripted disaster event. In this paper, we present the scenario, measurement methodology, and a first analysis of the data. Our work provides the first trace combining user interaction, mobility, and additional sensor readings of a large-scale emergency response scenario, facilitating future research

    Lesson Learnt and Future of AI Applied to Manufacturing

    Get PDF
    This chapter touches on several aspects related to the role of Artificial Intelligence (AI) and Machine Learning (ML) in the manufacturing sector, and is split in different sub-chapters, focusing on specific new technology enablers that have the potential of solving or minimizing known issues in the manufacturing and, more in general, in the Industrial Internet of Things (IIoT) domain. After introducing AI/ML as a technology enabler for the IoT in general and for manufacturing in particular, the next four sections detail two key technology enablers (EdgeML and federated learning scenarios, challenges and tools), one most important area of the IoT system that needs to decrease energy consumption and increase reliability (reduce receiver Processing complexity and enhancing reliability through multi-connectivity uplink connections), and finally a glimpse at the future describing a promising new technology (Embodied AI), its link with millimetre waves connectivity and potential business impact

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Mechanism Transitions in Publish/Subscribe Systems - Adaptive Event Brokering for Location-based Mobile Social Applications

    Get PDF
    Internet traffic caused by mobile devices will exceed the traffic originating from PCs by the year 2020, according to Cisco. With a projected 61-fold increase, location-based applications and augmented reality applications exhibit the fastest growth in the mobile sector. The success of interactive augmented reality games such as Google’s Ingress or Pokémon Go is the latest indicator for the increasing popularity of location-based mobile social applications. However, the direct interaction among users and the inherent locality of this interaction in such applications pose considerable challenges to a communication system. Efficient brokering of content based on the physical location of mobile clients is further complicated by application-specific attraction points and the resulting heterogeneities and dynamics of client mobility. The publish/subscribe paradigm is well suited to model this interest-based communication pattern between users. Distinct mechanisms for both location-based filtering and locality-aware dissemination of events have been proposed for numerous application domains. However, their combined utilization and their adaptation to user mobility, network heterogeneity, and dynamic workload characteristics of mobile social applications remains an open research challenge. In this thesis, we design and implement transitions between distinct mechanisms for location-based filtering and locality-aware dissemination of events as our first contribution to address this challenge. We develop a methodology for the encapsulation of mechanisms and the execution of transitions within our publish/subscribe framework Bypass.KOM. Consequently, we apply our methodology to location-based filter schemes and dissemination mechanisms for locality-aware publish/subscribe, integrating state of the art mechanisms into Bypass.KOM. We propose distinct execution strategies for transitions, focusing on the seamless operation of the publish/subscribe system during execution by means of state transfer between mechanisms. By deriving common abstractions for transition-enabled mechanisms and the coordinated execution of transitions, we generalize our methodology as part of the Simonstrator.KOM platform. These abstractions for the design and evaluation of transition-enabled communication systems constitute our second contribution. This includes mobility and workload models for location-based mobile social applications. Based on a prototype of Bypass.KOM, we conduct an extensive evaluation of our contributions using the Simonstrator.KOM platform. We show that our state transfer mechanism and the proposed abstractions for transition-enabled mechanisms lead to a seamless execution of transitions. Additionally, we demonstrate the combined utilization of location-based filtering and locality-aware event dissemination as coexisting transition-enabled mechanisms. Overall, we show that our contributions allow the publish/subscribe system to adapt to application-specific mobility and workload characteristics by executing the respective mechanism transitions

    Towards and Adaptive Publish/Subscribe Approach Supporting Transitions

    No full text

    The human factor: A simulation environment for networked mobile social applications

    No full text
    Networked mobile social applications are becoming increasingly popular with Pokémon Go being a recent example. These applications focus on direct interaction between mobile users within close proximity. As a result, tailored communication systems have been proposed to exploit the resulting locality properties by augmenting typical cloud-based application infrastructures with local ad hoc communication. However, evaluating these communication systems is challenging: (i) client mobility heavily influences interaction and, thus, the resulting workload; (ii) a multitude of connectivity models needs to be considered for direct ad hoc communication, cellular networks, and potential Wi-Fi offloading scenarios. Consequently, we present a set of human mobility models, interaction models for networked social applications, and communication models to ease the creation of these surrounding heterogeneous scenarios for the considered communication systems. We integrate these models into a common simulation and prototyping environment, bridging the gap between mobility and network simulation and allowing the combined study of human-centric and network-centric effects. We show the applicability and resulting insights of our proposed models for two case studies: a mobile augmented reality game and a monitoring service utilizing multi-dimensional offloading

    Towards Transitions between Role Assignment Schemes: Enabling Adaptive Offloading in Challenged Networks

    No full text
    The ever increasing number of mobile devices and their heterogeneity requires an efficient utilization of the cellular communication infrastructure. To this end, different offloading approaches have been proposed in the literature. All approaches rely on schemes that assign roles to mobile users, with the respective assignment procedure being realized either centrally or distributed. However, current role assignment schemes are limited to a specific utility function by design (e.g., minimizing the energy consumption), and are unable to adapt to dynamic network conditions and target utilities. This substantially limits the applicability of offloading approaches in dynamic and challenged networks. In this paper, we propose the execution of transitions between role assignment schemes to adapt offloading approaches to challenged networks. We propose and discuss a framework that enables the integration of centralized and decentralized role assignment schemes and the execution of transitions between the respective schemes. Based on an initial evaluation of the coordination aspects of our framework, we identify future research directions and challenges towards the adaptive utilization of offloading schemes in challenged networks
    corecore